A branched TAT cell-penetrating peptide as a novel delivery carrier for the efficient gene transfection
نویسندگان
چکیده
BACKGROUND Cell penetrating peptides (CPPs) as one class of non-viral vectors, have been widely explored as a delivery tool due to their cell-penetrating capability with low cytotoxicity. However, CPPs have reported to have low gene transfection efficiency mainly due to the fact that DNA is larger than other biomolecules. On the other hand, the conventional linear CPPs are unstable for constructing the DNA complexes with it. Thus, here we designed a branched CPP using disulfide bridges based on the linear TAT peptide, to enhance the gene delivery efficiency in a better way. RESULTS The branched TAT (BTAT) was synthesized by the DMSO oxidation method and showed high-molecular-weight about 294 kDa. The resulting BTAT was complexed with plasmid green fluorescence protein (pGFP) gene at various N/P ratios. The gene transfection efficiency was assessed on HeLa cells after treating with BTAT/pGFP complexes, showed high gene transfection efficiency as conformed by flowcytometry followed by confocal laser scanning microscopy (CLSM) visualization. CONCLUSION The novel BTAT/pGFP complex exhibited significantly higher stability and redox cleavability by reducing agent. In addition, BTAT showed higher transfection efficiency approximately 40-fold than those of the TAT and mTAT complexes. Our primary experiments demonstrated the potential of BTAT as a suitable candidate for gene delivery and it could be applied for various types of gene delivery platforms.
منابع مشابه
Evaluation of Cell Penetrating Peptide Delivery System on HPV16E7 Expression in Three Types of Cell Line
Background: The poor permeability of the plasma and nuclear membranes to DNA plasmids are two major barriers for the development of these therapeutic molecules. Therefore, success in gene therapy approaches depends on the development of efficient and safe non-viral delivery systems. Objectives: The aim of this study was to investigate the in vitro delivery of plasmid DNA encoding HPV16 E7 gene...
متن کاملBrevinin-2R-linked polyethylenimine as a promising hybrid nano-gene-delivery vector
Objective(s): Polyethylenimine (PEI) is one of the most widely used polymers in gene delivery. The aim of this study was to modify PEI by replacing some of its primary amines with Brevinin 2R (BR-2R) peptide in order to increase the efficiency of gene delivery.Materials and Methods: Polyethylenimine was modified by BR-2R peptide by two d...
متن کاملSRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin
Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...
متن کاملSRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin
Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...
متن کاملIn vitro Delivery of HIV-1 Nef Antigen by Histidine-rich nona-arginine and Latarcin 1 peptide
Introduction: The Nef accessory protein is an attractive antigenic candidate in the development of HIV-1 DNA- or protein-based vaccines. The most crucial disadvantage of DNA and protein-based vaccines is their low immunogenicity, which can be improved by cell-penetrating peptides (CPPs) as effective carrier molecules. Methods: In this study, the HIV-1 Nef protein was generated in the Escherichi...
متن کامل